Abstract Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that many other biological systems are affected, including the central nervous system (CNS). Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but its neurotropic potential is still debated. Here, we investigate the presence of SARS-CoV-2 in the brain from an infant patient deceased from COVID-19. The susceptibility to virus infection was compatible with the expression levels of viral receptor ACE2, which is increased in the ChP in comparison to other brain areas. To better comprehend the dynamics of the viral infection in neural cells, we exposed human neurospheres to SARS-CoV-2. Similarly to the human tissue, we found viral RNA in neurospheres, although viral particles in the culture supernatant were not infective. Based on our observations in vivo and in vitro, we hypothesize that SARS-CoV-2 does not generate productive infection in developing neural cells and that infection of ChP weakens the blood-cerebrospinal fluid barrier allowing viruses, immune cells, and cytokines to access the CNS, causing neural damage in the young brain.

2nd October 2020 • comment